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1 Introduction 
This tutorial is part of the SYNERGY H2020 European project 

(http://cordis.europa.eu/project/rcn/199104_en.html). It is the first of a series of three 

deliverables of WP1 dedicated to training on surrogate-assisted multi-objective optimisation 

and parallel computing. The focus of the tutorial is on parallel multi-objective optimisation. It 

is destined to researchers, engineers and students who are familiar with multi-objective 

optimisation but not with its parallelisation. The tutorial introduces the parallel models and 

explains when and how they can be used. Best practices / recommendations for the use of these 

models for efficient design and implementation of parallel metaheuristics are presented. These 

best practices can be seen as lessons learned from our experience in parallel optimisation that 

should be disseminated.  

An optimisation problem consists in maximising or minimising a cost function (single-

objective problem) or a set of cost functions (multi-objective problem or MOP) under a set of 

constraints. Resolution methods fall into two categories: exact methods and near-optimal (or 

heuristic) methods. Exact methods such as Branch-and-Bound algorithms allow one to solve 

MOPs to optimality, but they are CPU-time intensive for large problems. Conversely, heuristics 

provide faster near-optimal solutions. These methods can be either problem-specific or generic 

(metaheuristics). One can distinguish two classes of metaheuristics: single-solution 

metaheuristics and population-based metaheuristics. In the first category, an algorithm consists 

in iteratively improving a single solution by exploring its neighbourhood (according to a given 

criterion). In the second category, the metaheuristic performs a reproduction process by 

applying stochastic operators on a population of solutions until convergence (defined using a 

given criterion). In this tutorial, multi-objective (MO) population-based metaheuristics (MO 

Evolutionary Algorithms or MOEAs) are considered. However, the presented study can be 

applied to other classes of resolution methods.  

Real-world MOPs, such as in engineering design and life science, are more and more complex 

and NP-hard, their modelling is continuously evolving in terms of constraints and objectives, 

and their resolution is CPU time-consuming. Although MOEAs allow to reduce the temporal 

complexity of their resolution they are unsatisfactory to tackle large problems. Parallel 
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computing is recognised as a powerful means to deal with such issue. This tutorial focuses on 

parallel MOEAs for solving large problems.  

1.1 Why parallel computing for MOEAs? 
Parallel computing can be used in the design and implementation of MOEAs for the following 

reasons:  

• Speedup the search to approximate the Pareto front: The goal is to reduce the search 

time. This helps designing interactive optimisation methods which is an important issue 

for multi-criteria decision making. This is also an important aspect for some class of 

problems where there are hard requirements on search time such as in dynamic MOPs 

and time-critical operational MOPs, for example “real-time” planning and control. 

• Improve the quality of the obtained Pareto solutions: Some parallel models for MOEAs 

allow to improve the quality of Pareto solutions. Indeed, exchanging information 

between algorithms will alter their behaviour in terms of searching the landscape 

associated with the MOP. The main goal in a cooperation between algorithms is to 

improve the quality of Pareto solutions. Both convergence to better Pareto solutions 

and reduced search time may happen. Let us notice that a parallel model for MOEAs 

may be more effective than a serial algorithm even on a single processor. 
• Improve the robustness: A parallel MOEA may be more robust in terms of solving in 

an effective way different MOPs and different instances of a given problem. Robustness 

may be measured in terms of the sensitivity of the algorithm to its parameters and the 

target MOPs. 
• Solve large scale MOPs: Parallel MOEAs allow to solve large scale instances of 

complex MOPs. A challenge here is to solve very large instances that cannot be solved 

on a single-CPU machine. Another similar challenge is to solve more accurate 

mathematical models associated with different MOPs. Improving the accuracy of 

mathematical models generally increases the size of the associated problems to be 

solved. Moreover, some optimisation problems need the manipulation of huge 

databases such as in data mining. 
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In this tutorial, a clear difference is made between the parallel design and implementation 

aspects of MOEAs. A unifying view of parallel models for MOEAs is presented. The 

implementation point of view deals with the efficiency of parallel MOEAs on a target parallel 

architecture using a given parallel language, programming environment or middleware. 

Different hardware criteria, which affect the efficiency of the implementation, will be 

considered: shared memory versus distributed memory, homogeneous versus heterogeneous, 

dedicated versus non-dedicated (shared by multiple users), local network versus large network. 

Indeed, those criteria have a strong impact on the deployment technique employed such as load 

balancing and fault-tolerance. Depending on the type of the target parallel architecture, 

different parallel and distributed languages, programming environments and middleware may 

be used. 

This tutorial is organised as follows. In Section 2, the major parallel models for designing 

MOEAs are presented. Section 3 deals with the implementation issues of parallel MOEAs. The 

main concepts of parallel platforms and programming paradigms that interfere with the design 

and implementation of parallel MOEAs are outlined. The main performance indicators that can 

be used to evaluate parallel multi-objective search algorithms in terms of efficiency are 

detailed. 

2 Parallel design of MOEAs 
Three major hierarchical models are identified (see Table 1): algorithm-level, iterative-level 

and solution-level.   

• Algorithmic-level: In this model, independent or cooperating self-contained MOEAs 

are deployed simultaneously. It is a problem-independent inter-algorithm 

parallelisation. If the different MOEAs are independent, the search will be equivalent 

to the serial execution of the algorithms in terms of the quality of Pareto solutions. 

However, the cooperative model will alter the behaviour of the MOEAs and enable the 

improvement in terms of the quality of Pareto solutions. 
• Iteration-level: In this model, each iteration of a MOEA is parallelised. It is a problem-

independent intra-algorithm parallelisation. The behaviour of the MOEA is not altered. 
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The main objective is to speed up the algorithm by reducing the search time. Indeed, 

the iteration cycle of MOEAs on large populations, especially for real-world MOPs, 

requires a large amount of computational resources. 
• Solution-level: In this model, the parallelisation process handles a single solution of the 

search space. It is a problem-dependent intra-algorithm parallelisation. In general, 

evaluating the objective functions or constraints for a generated solution is frequently 

the most costly operation in MOEAs. In this model, the behaviour of the search 

algorithm is not altered. The objective is mainly the speedup of the search. 
Table 1.  Parallel models of MOEAs 

Parallel Problem Behaviour Granularity Goal 

model dependency    
     

     

Algorithmic-level Independent Altered MOP algorithm Effectiveness 
     

Iteration-level Independent Not altered Iteration Efficiency 
     

Solution-level Dependent Not altered Solution Efficiency 
 

2.1 Algorithmic-level parallel model 
In this model, several MOEAs are launched in parallel. They may cooperate or not to solve the 

target MOPs. 

2.1.1 Independent algorithmic-level parallel model 

In the independent-level parallel model, the different MOEAs are executed without any 

cooperation. The different MOEAs may be initialised with different populations. Different 

parameter settings may be used for the MOEAs such as the mutation and crossover 

probabilities. Moreover, each search component of an MOEA may be designed differently: 

encoding, search operators (e.g. variation operators), objective functions, constraints, fitness 

assignment, diversity preservation and elitism. This parallel model is straightforward to design 

and implement, the master-worker paradigm is well suited. In this paradigm, each worker 
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implements an MOEA. The master defines the different parameters to use by the workers and 

determines the best found Pareto solutions from those obtained by the workers. In addition to 

speeding up the execution of the MOEA, this parallel model enables to improve its robustness 

[29]. 

This model raises particularly the following question: Is it equivalent to execute k MOEAs 

during a given time t and to execute a single MOEA during k ∗ t? The answer depends on the 

landscape properties of the problem (e.g. distribution of the Pareto local optima). 

2.1.2 Cooperative algorithmic-level parallel model 

In the cooperative model for parallel MOEAs, the different MOEAs exchange information 

related to the search with the intent to compute a better and more robust Pareto front [30]. In 

general, an archive is maintained in addition to the current population. This archive contains 

all Pareto optimal solutions generated during the search. In designing this parallel cooperative 

model for any MOEA, the same design questions need to be answered: 

• The exchange decision criterion (When?): The exchange of information between the 

MOEAs can be decided either in a blind (periodic or probabilistic) way or according to 

an “intelligent” adaptive criterion. 
• The exchange topology (Where?): The exchange topology indicates for each MOEA its 

neighbour(s) regarding the communication of information, i.e. the source/destination 

algorithm(s)/island(s) of the information. The ring, mesh and hypercube regular 

topologies are the most popular ones. The ring topology often gives good results, but 

the random one has been proven to be competitive at large scale (in number of islands). 
• The exchanged information (What?): This parameter specifies the information to be 

exchanged between MOEAs. In general, this information is composed of solutions 

picked from the current population and/or the Pareto archive. It can also be other 

elements in the search memory.  
• The integration policy (How?): The integration policy deals with the usage of the 

received information. In general, the Pareto solutions received will serve to update the 

local Pareto archive. For the current population, any replacement strategy can be used 
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(e.g. random, elitist). For instance, the best Pareto set is simply updated by the best 

between the local best Pareto set and the neighbouring best Pareto set.  
Another main issue in the development of parallel MOPs is how the Pareto set is built during 

the optimisation process. Two different approaches may be considered.  

• Centralised Pareto Front: The front is a centralised data structure of the algorithm that 

is built by the MOEAs during the whole computation. This way, the new non-

dominated solutions in the Pareto optimal set are global Pareto optima [1][6][5]. 
• Distributed Pareto Front: The Pareto front is distributed among the MOEAs so that the 

algorithm works with local non-dominated solutions that need to be somehow 

combined at the end of their work [20][9][19]. No pure centralised approach has been 

found clearly motivated by efficiency issues [17]. All the existing centralised 

approaches are combined with distributed phases where local non-dominated solutions 

are considered. After each distributed phase, a single optimal Pareto front is built by 

using these local Pareto optima. Then, the new Pareto front is again distributed for local 

computation, and so on. 
2.2 Iteration-level parallel model 
In this parallel model, the focus is put on the parallelisation of each iteration of MOEA. It is 

generally based on the distribution of the handled solutions. Indeed, the most resource-

consuming part in an MOEA is the evaluation of the generated solutions. It is the easiest and 

the most widely used parallel model in MOPs. Indeed, many MOPs are complex in terms of 

the objective functions. For instance, some engineering design applications integrate solvers 

dealing with different surrogate models: computational fluid dynamics (CFD), computational 

electromagnetics (CEM), or finite element methods (FEM). Other real-life applications deal 

with complex simulators. A particularly efficient execution is often obtained when the ratio 

between communication and computation is high. Otherwise, most of the time is wasted in 

communication, leading to a poor performance of the parallel algorithm. 

The population of individuals can be decomposed and handled in parallel. In the master-worker 

paradigm, a master performs the selection operations and the replacement. The selection and 
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replacement are generally serial procedures, as they require a global management of the 

population. The workers perform the recombination, mutation and the evaluation of the 

objective function. The master sends the partitions (subpopulations) to the workers. The 

workers return back newly evaluated solutions to the master [20].  

According to the order in which the evaluation phase is performed in comparison with the other 

parts of the MOEA, two modes can be distinguished:  

• Synchronous: In the synchronous mode, the worker manages the evolution process and 

performs in a serial way the different steps of selection and replacement. At each 

iteration, the master distributes the set of new generated solutions among the workers 

and waits for the results to be returned back. After the results are collected, the evolution 

process is restarted. The model does not change the behaviour of the MOEA compared 

to a sequential model. 

• Asynchronous: In the asynchronous mode, the worker does not wait for the return of all 

evaluations to perform the selection, reproduction and replacement steps. The steady-

state MOEA is a good example illustrating the asynchronous model and its advantages. 

In the asynchronous model applied to a steady-state MOEA, the recombination and the 

evaluation steps may be done concurrently. The master manages the evolution engine 

and two queues of individuals of a given fixed size: individuals to be evaluated, and 

solutions being evaluated. The individuals of the first queue wait for a free evaluating 

node. When the queue is full the process blocks. The individuals of the second queue 

are assimilated into the population as soon as possible. The reproduced individuals are 

stored in a FIFO data structure, which represents the individuals to be evaluated. The 

MOEA continues its execution in an asynchronous manner, without waiting for the 

results of the evaluation phase. The selection and reproduction phase are carried out 

until the queue of non-evaluated individuals is full. Each evaluator agent picks an 

individual from the data structure, evaluates it, and stores the results into another data 

structure storing the evaluated individuals. The order of evaluations defined by the 

selection phase may not be the same as in the replacement phase. The replacement 

phase consists in receiving, in a synchronous manner, the results of the evaluated 

individuals, and applying a given replacement strategy of the current population. 
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2.3 Solution-level parallel model 
The main objective of the solution-level parallel model for MOP is to speed up the search by 

parallelising the computations performed on the solutions (e.g. evaluation of objectives, 

constraint satisfaction). Indeed, the evaluation of multiple objective functions in MOPs is the 

most time-consuming part into a MOEA. Therefore, several algorithms try to reduce this time 

by parallelising the calculation of the fitness evaluation [22][23][24]. The classical approaches 

has to be adapted to multi-objective optimisation: 

• Functional decomposition: This approach consists in distributing the different objective 

functions among the workers, and each of them computes the value of its assigned 

function on each solution. The master will then aggregate the partial results for all the 

solutions. Such approach allows a degree of concurrency and the scalability is limited 

to the number of objective functions, meaning often 2 or 3. Moreover, each objective 

function may be decomposed into several sub-functions. Then, the degree of 

concurrency will be equal to the number of sub-functions. 

• Data decomposition: For each data partition of the problem (database, geographical 

area, structure, etc.), all the objectives of the problem are evaluated and returned to the 

master. The master will aggregate the different results. 

In the multi-objective context, the scalability of this model is limited by the number of 

objectives and the number of sub-functions per objective. The scalability could be improved 

again if the different objective functions are simultaneously parallelised. 

2.4 Hierarchical combination of the parallel models 
The three presented models for parallel MOEAs may be used in conjunction within a 

hierarchical structure [27]. The parallelism degree associated with this hybrid model is very 

important. Indeed, this hybrid model is very scalable; the degree of concurrency is k ∗ m ∗ n, 

where k is the number of MOEAs used, m is the size of the population, and n is the number of 

partitions or tasks associated withs the evaluation of a single solution. The combination of the 

parallel models is particularly required in a large scale context.  
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3 Parallel implementation of MOEAs 
Parallel implementation of MOEAs deals with the efficient mapping of the associated parallel 

models to the parallel hardware target of the execution.  

3.1 Parallel hardware 
The main criteria of parallel machines, which will have an impact on the implementation of 

parallel MOEAs, are: memory sharing, homogeneity of resources, resource sharing by multiple 

users, scalability, and volatility. Those criteria will be used to analyse the different parallel 

models and their efficient implementation. A guideline is given for the efficient implementation 

of each parallel model of MOEAs according to each class of parallel architectures. 

Shared-memory versus distributed-memory architectures: In shared-memory parallel 

architectures, the processors are connected by a shared memory used for data exchange, which 

requires synchronisation. Symmetric Multiprocessors (SMP) machines and multi-core 

processors are examples of such architectures. In distributed-memory architectures, each 

processor has its own memory. These machines are harder to program: data and/or tasks have 

to be explicitly distributed to processors. Exchanging information is also explicitly handled 

using message passing between nodes (synchronous or asynchronous communications). The 

cost of communication is not negligible and has to be minimised to design an efficient parallel 

MOEA. Clusters of processors (COWs) and Networks of processors (NOWs) are two examples 

of distributed-memory machines.  

Homogeneous versus heterogeneous parallel architectures: Parallel architectures may be 

characterised by the homogeneity of the used processors, communication networks, operating 

systems, etc. For instance, COWs are in general homogeneous parallel architectures while 

NOWs are heterogeneous.  

 

Shared versus dedicated parallel architectures: Most massively parallel machines (MPP) and 

COWs are generally dedicated environments. Indeed, at a given time, the processors 

composing those architectures are dedicated to the execution of a single application. NOWs 
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constitute a low-cost hardware alternative to run parallel algorithms but are in general shared 

by multiple users and applications. 

Local network (LAN) versus wide-area network (WAN): MPP, COWs and NOWs may be 

considered as tightly coupled architectures. Large NOWs and grid computing platforms are 

loosely coupled and are affected by a higher cost of communication. During the last decade, 

grid computing systems have been largely deployed to provide high performance computing 

platforms. A computational grid is a scalable pool of heterogeneous and dynamic resources 

geographically distributed across multiple administrative domains and owned by different 

organisations [10]. Two types of grids may be distinguished: High-Performance Computing 

Grid (HPC Grid) which interconnects dedicated supercomputers or clusters via a dedicated 

high-speed network; Desktop Grid composed of numerous shared and volatile workstations 

connected via a non-dedicated network such as Internet.  

Volatile versus non-volatile parallel architectures: In a volatile parallel architecture, there is a 

dynamic temporal and spatial availability of resources. In a desktop grid or a large network of 

shared workstations, volatility is not an exception but a rule. Due to the large scale nature of 

the grid, the probability of resource failure is high.  

3.2 Parallel programming environments and middleware 
The architecture of the target parallel machine strongly influences the choice of the parallel 

programming model to use. There are two main parallel programming paradigms: shared-

memory and message passing. Two main alternatives exist to program shared-memory 

architectures: 

• Multi-threading: A thread may be viewed as a lightweight process. Different threads of 

the same process share some resources and the same address space. The main 

advantages of multi-threading are the fast context switching, the low resource usage, 

and the possible recovery between communication and computation. Each thread can 

be executed on a different processor or core. Multi-threaded programming may be used 

within libraries such as the standard Pthreads library [3] or programming languages 

such as Java threads [11]. 
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• Compiler directives: One of the standard shared memory paradigms is OpenMP (Open 

Multi-Processing, www.openmp.org). It is based on a set of compiler directives 

interfaced with the languages Fortran, C and C++ [4]. Those directives are integrated 

in a program to specify which sections of the program to be parallelised by the compiler. 

Distributed memory parallel programming environments are based mainly on the following 

three paradigms:  

• Message passing: Message passing is probably the most widely used paradigm to 

program parallel architectures. Processes of a given parallel program communicate by 

exchanging messages in a synchronous or asynchronous way. The well-known 

programming environments based on message passing are sockets and MPI (Message 

Passing Interface). 
• Remote Procedure Call: Remote procedure call (RPC) represents a traditional way of 

programming parallel and distributed architectures. It allows a program to cause a 

procedure to execute on another processor. 
• Object-oriented models: As in sequential programming, parallel object-oriented 

programming is a natural evolution of RPC. A classical example of such a model is 

Java RMI (Remote Method Invocation).  
In the last decade, great work has been carried out on the development of grid middleware. The 

Globus toolkit (www.globus.org) represents the de facto standard grid middleware. It supports 

the development of distributed service-oriented computing applications [21]. Condor is an 

efficient and easy way to implement parallel programs on shared and volatile distributed 

architectures such as large networks of heterogeneous workstations and desktop grids, where 

fault tolerance is ensured by a checkpoint/recovery mechanism. The use of MPI within Globus 

is more or less adapted to high performance computing (HPC) grids. Table 2 presents a 

guideline on which environment to use in programming a parallel MOEA according to the 

target execution parallel hardware. 
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Table 2. Parallel programming environments for different parallel architectures 

Architecture Examples of suitable programming environment 

SMP Multi-threading library within an operating system (e.g. Pthreads) 

Multi-core Multi-threading within languages: Java 

 OpenMP interfaced with C, C++ or Fortran 

COW Message passing library: MPI interfaced with C, C++, Fortran 

Hybrid platforms MPI or Hybrid models: MPI/OpenMP, MPI/Multi-threading 

NOW Message passing library: MPI interfaced with C, C++, Fortran 

 Condor or object models (JavaRMI) 

HPC Grid MPICH-G (Globus) or GridRPC models (Netsolve, Diet) 

Desktop Grid Condor-G or object models (Proactive) 

 

3.3 Performance evaluation 
For serial algorithms, the main performance metric is the execution time as a function of the 

input size. In parallel algorithms, this metric depends also on the number of processors and the 

characteristics of the parallel architecture. Hence, some classical performance indicators such 

as speedup and efficiency have been introduced to evaluate the scalability of parallel algorithms 

[12]. The scalability of a parallel algorithm measures its ability to achieve performance 

proportional to the number of processors. 

The speed-up SN is defined as the time T1 it takes to complete a program with one processor 

divided by the time TN it takes to complete the same program with N processors: 𝑆% = 	
()
(%

. 

One can use wall-clock time instead of CPU time. The CPU time is the time a processor spends 

in the execution of the program, and the wall-clock time is the time of the whole program 

including the input and output. Conceptually the speed-up is defined as the gain achieved by 

parallelising a program. If SN > N (resp. SN = N), a super-linear (resp. linear) speedup is 

obtained [26]. Mostly, a sub-linear speedup SN < N is obtained. This is due to the overhead of 

communication and synchronisation costs. The case SN < 1 means that the sequential time is 
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smaller than the parallel time which is the worst case. This will be possible if the 

communication cost is much higher than the execution cost. 

The efficiency EN using N processors is defined as the speed-up SN divided by the number of 

processors N i.e. 𝐸% = 	
+%
%

. Conceptually the efficiency can be defined as how well N 

processors are used when the program is computed in parallel. An efficiency of 100% means 

that all of the processors are fully used all the time. For some large real-life applications, it is 

impossible to have the sequential time as the sequential execution of the algorithm cannot be 

performed. Then, the incremental efficiency EN M may be used to evaluate the efficiency 

extending the number of processors from N to M processors i.e. 𝐸%, = 	 %-.%
,-.,

. 

Different definitions of speedup may be used depending on the definition of the sequential time 

reference T1. Asking what is the best measure is useless; there is no global dominance between 

the different measures. The choice of a definition depends on the objective of the performance 

evaluation analysis. Then, it is important to specify clearly the choice and the objective of the 

analysis. 

The absolute speedup is used when the sequential time T1 corresponds to the best known 

sequential time to solve the problem. Unlike other scientific domains such as numerical algebra 

where for some operations the best sequential algorithm is known, in MOEA search, it is 

difficult to identify the best sequential algorithm. So, the absolute speedup is rarely used. The 

relative speedup is used when the sequential time T1 corresponds to the parallel program 

executed on a single processor. 

Fixed number of iterations: This condition is the most used to evaluate the efficiency of a 

parallel MOEA. Using this definition, a superlinear speedup is possible SN > N [8]. This is due 

to the characteristics of the parallel architecture where there are more resources (e.g. size of 

main memory and cache) than in a single processor. For instance, the search memory of an 

MOEA executed on a single processor may be larger than the main memory of a single 

processor and then some swapping will be carried out, which represents an overhead in the 

sequential time. When using a parallel architecture, the whole memory of the MOEA may fit 

in the main memory of its processors, and then the memory swapping overhead will not occur. 
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Convergence to a set of solutions with a given quality: This measure is interesting to evaluate 

the effectiveness of a parallel MOEA. It is only valid for parallel models of MOEAs based on 

the algorithmic-level, which alter the behaviour of the serial MOEA. A super-linear speedup is 

possible and is due to the characteristics of the parallel search. Indeed, the order of searching 

different regions of the search space may be different from serial search. The sequences of 

visited solutions in parallel and sequential search are different. This is similar to the super-

linear speedups obtained in exact search algorithms such as branch and bound [25]. 

Most of evolutionary algorithms are stochastic algorithms. When the stopping condition is 

based on the quality of the solution, one cannot use the speedup metric as defined previously. 

The original definition may be extended to the average speedup: 𝑆% = 	
.(())
.((%)

. 

The same seed for the generation of random numbers has to be used for a fairer experimental 

performance evaluation. The speedup metrics have to be reformulated for heterogeneous 

architectures. The efficiency metric may be used for this class of architectures. Moreover, it 

can be used for shared parallel machines with multiple users. 

3.4 Main properties of parallel MOEAs 
The performance of a parallel MOEA on a given parallel architecture depends mainly on its 

granularity. The granularity of a parallel program is the amount of computation performed 

between two communications. It computes the ratio between the computation time and the 

communication time. The three parallel models (algorithmic-level, iteration-level, solution-

level) have a decreasing granularity from coarse-grained to fine-grained. The granularity 

indicator has an important impact on the speedup. The larger is the granularity, the better is the 

obtained speedup. 

The degree of concurrency of a parallel MOEA is represented by the maximum number of 

parallel processes at any time. This measure is independent from the target parallel architecture. 

It is an indication of the number of processors that can employed usefully by the parallel 

MOEA. Asynchronous communications and the recovery between computation and 

communication is also an important issue for a parallel efficient implementation. Indeed, most 

of the actual processors integrate different parallel elements such as ALU, FPU, GPU, DMA, 



 
  
SYNERGY  Horizon 2020 – GA No 692286 

 
 

 

 
 

D1.1 17 31 July 2016 
 

etc. Most of the computing part takes part in cache. Hence, the RAM bus is often free and can 

be used by other elements such as the DMA. Hence, input/output operations can be recovered 

by computation tasks. 

Scheduling the different tasks composing a parallel MOEA is another classical issue to deal 

with for their efficient implementation. Different scheduling strategies may be used depending 

on whether the number and the location of works (tasks, data) depend or not on the load state 

of the target machine: 

• Static scheduling: This class represents parallel MOEAs in which both the number of 

tasks of the application and the location of work (tasks, data) are generated at compile 

time. Static scheduling is useful for homogeneous, and non-shared and non-volatile 

heterogeneous parallel architectures. Indeed, when there are noticeable load or power 

differences between processors, the search time of an iteration is derived by the 

maximum execution time over all processors, presumably on the most highly loaded 

processor or the least powerful processor. A significant number of tasks are often idle 

waiting for other tasks to complete their work. 

• Dynamic scheduling: This class represents parallel MOEAs for which the number of 

tasks is fixed at compile time, but the location of work is determined and/or changed at 

run-time. The tasks are dynamically scheduled on the different processors of the parallel 

architecture. Dynamic load balancing is important for shared (multi-user) architectures, 

where the load of a given processor cannot be determined at compile time. Dynamic 

scheduling is also important for irregular parallel MOEAs in which the execution time 

cannot be predicted at compile time and varies during the search. For instance, this 

happens when the evaluation cost of the objective functions depends on the solution. 
• Adaptive scheduling: Parallel adaptive algorithms are parallel computations with a 

dynamically changing set of tasks. Tasks may be created or killed as a function of the 

load state of the parallel machine. A task is created automatically when a node becomes 

idle. When a node becomes busy, the task is killed. Adaptive load balancing is 

important for volatile architectures such as desktop grids. 
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• For some parallel and distributed architectures, such as shared networks of workstations 

and grids, fault tolerance is an important issue. Indeed, in volatile shared architectures 

and large-scale parallel architectures, the fault probability is relatively important. 

Checkpointing and recovery techniques constitute one answer to this problem. 

Application-level checkpointing is much more efficient than system-level 

checkpointing. Indeed, in system-level checkpointing, a checkpoint of the global state 

of a distributed application composed of a set of processes is carried out. In application-

level checkpointing, only minimal information will be checkpointed (e.g. population of 

individuals, generation number). Compared to system-level checkpointing, a reduced 

cost is then obtained in terms of memory and time. Finally, security issues may be 

important for large-scale distributed architectures such as grids and clouds (multi-

domain administration, firewall, etc.) and some specific applications such as medical 

and bioinformatics research applications of industrial concern [30]. 

3.5 Algorithmic-level parallel model 
Granularity: The algorithmic-level parallel model has the largest granularity. Indeed, the time 

for exchanging the information is in general much less than the computation time of a MOEA. 

There are relatively low communication requirements for this model. The more important is 

the frequency of exchange and the size of exchanged information, the smaller is the granularity. 

This parallel model is the most suited to large-scale distributed architectures over internet such 

as grids. Moreover, the trivial model with independent algorithms is convenient for low-speed 

networks of workstations over intranet. As there is no essential dependency and communication 

between the algorithms, the speedup is generally linear for this parallel model. The size of the 

data exchanged (for instance the number of Pareto solutions) will influence the granularity of 

the model. If the number of Pareto solutions is high the communication cost will be exorbitant 

particularly on large-scale parallel architectures such as grids. 

For an efficient implementation, the frequency of exchange (resp. the size of the exchanged 

data) needs to be correlated to the latency (resp. bandwidth) of the communication network of 

the parallel architecture. To optimise the communication between processors, the exchange 

topology can be specified according to the interconnection network of the parallel architecture. 
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The specification of the different parameters associated with the blind or intelligent migration 

decision criterion (migration frequency/probability and improvement threshold) is particularly 

crucial on a computational grid. Indeed, due to the heterogeneous nature of computational grids 

these parameters have to be specified for each MOEA in accordance with the machine it is 

hosted on. 

Scalability: The degree of concurrency of the algorithmic-level parallel model is limited by the 

number of MOEAs involved in solving the problem. In theory, there is no limit. However, in 

practice, it is limited by the owned resources of the target parallel architectures, and also by the 

effectiveness aspect of using a large number of MOEAs. 

Synchronous versus asynchronous communications: The implementation of the algorithmic-

level model is either asynchronous or synchronous. The asynchronous mode associates with 

each MOEA an exchange decision criterion, which is evaluated at each iteration of the MOEA 

from the state of its memory. If the criterion is satisfied, the MOEA communicates with its 

neighbours. The exchange requests are managed by the destination MOEAs within an 

undetermined delay. The reception and integration of the received information is thus 

performed during the next iterations. However, in a computational grid context, due to the 

material and/or software heterogeneity issue, the MOEAs could be at different evolution stages 

leading to the non-effect and/or super-solution problem. For instance, the arrival of poor 

solutions at a very advanced stage will not bring any contribution as these solutions will likely 

not be integrated. In the opposite situation, the cooperation will lead to premature convergence. 

From another point of view, as it is non-blocking, the model is more efficient and fault-tolerant 

to such a degree a threshold of wasted exchanges is not exceeded. In the synchronous mode, 

the MOEAs perform a synchronisation operation at a predefined iteration by exchanging some 

data. Such operation guarantees that the MOEAs are at the same evolution stage, and so 

prevents the non-effect and super-solution problem quoted before. However, in heterogeneous 

parallel architectures, the synchronous mode is less efficient in terms of consumed CPU time. 

Indeed, the evolution process is often hanging on powerful machines waiting the less powerful 

ones to complete their computation. The synchronous model is also not fault-tolerant as a fault 



 
  
SYNERGY  Horizon 2020 – GA No 692286 

 
 

 

 
 

D1.1 20 31 July 2016 
 

of a single MOEA implies the blocking of the whole model in a volatile environment. Then, 

the synchronous mode is globally less efficient on a computational grid. 

Asynchronous communication is more efficient than synchronous communication for shared 

architectures such as NOWs and desktop grids (e.g. multiple users, multiple applications). 

Indeed, as the load of networks and processors is not homogeneous, the use of synchronous 

communication will degrade the performances of the whole system. The least powerful 

machine will determine the performance. 

On a volatile computational grid, it is difficult to efficiently maintain topologies such as rings 

and toruses. Indeed, the disappearance of a given node (i.e. MOEA) requires a dynamic 

reconfiguration of the topology. Such reconfiguration is costly and makes the migration process 

inefficient. Designing a cooperation between a set of MOEAs without any topology may be 

considered. For instance, a communication scheme in which the target MOEA is selected 

randomly is more efficient for volatile architecture such as desktop grids. Many experimental 

results show that such topology allows a significant improvement of the robustness and quality 

of solutions. The random topology is therefore thinkable and even commendable in a 

computational grid context. 

Scheduling: Concerning the scheduling aspect, in the algorithmic-level parallel model the tasks 

correspond to MOEAs. Hence, the different scheduling strategies will differ as follows:  

• Static scheduling: The number of MOEAs is constant and correlated to the number of 

processors of the parallel machine. A static mapping between the MOEAs and the 

processors is realised. The localisation of MOEAs will not change during the search. 

• Dynamic scheduling: MOEAs are dynamically scheduled on the different processors of 

the parallel architecture. Hence, the migration of MOEAs during the search between 

different machines may happen. 

• Adaptive scheduling: The number of MOEAs involved into the search will vary 

dynamically. For example, when a machine becomes idle, a new MOEA is launched to 

perform a new search. When a machine becomes busy or faulty, the associated MOEA 

is stopped. 
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Fault-tolerance: The memory state of the algorithmic-level parallel model required for the 

checkpointing mechanism is composed of the memory of each MOEA and the information 

being migrated (i.e. population, archive, generation number). 

3.6 Iteration-level parallel model 
Granularity: A medium granularity is associated to the iteration-level parallel model. The ratio 

between the evaluation of a partition and the communication cost of a partition determines the 

granularity. This parallel model is then efficient if the evaluation of a solution is time-

consuming and/or there are a large number of candidate solutions to evaluate. The granularity 

will depend on the number of solutions in each sub-population. 

Scalability: The degree of concurrency of this model is limited by the size of the population. 

The use of large populations will increase the scalability of this parallel model. 

Synchronous versus asynchronous communications: Introducing asynchronism in the iteration-

level parallel model will increase the efficiency of parallel MOEAs. In the iteration-level 

parallel model, asynchronous communications are related to the asynchronous evaluation of 

partitions and construction of solutions. Unfortunately, this model is more or less synchronous. 

Asynchronous evaluation is more efficient for heterogeneous or shared or volatile parallel 

architectures. Moreover, asynchronism is necessary for optimisation problems where the 

computation cost of the objective function (and constraints) depends on the solution and 

different solutions may have different evaluation cost. 

Asynchronism may be introduced by relaxing the synchronisation constraints. For instance, 

steady-state algorithms may be used in the re-production phase [7]. 

The two main advantages of the asynchronous model over the synchronous model are fault 

tolerance and robustness if the fitness computation takes very different computations time. 

Whereas some time-out detection can be used to address the former issue, the latter one can be 

partially overcome if the grain is set to very small values, as individuals will be sent out for 

evaluations upon request of the workers. Therefore, the model is blocking and, thus, less 

efficient on a heterogeneous computational grid. Moreover, as the model is not fault-tolerant, 

the disappearance of an evaluating agent requires the redistribution of its individuals to other 
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agents. As a consequence, it is essential to store all the solutions not yet evaluated. The 

scalability of the model is limited to the size of the population. 

Scheduling: In the iteration-level parallel model, tasks correspond to the 

construction/evaluation of a set of solutions. Hence, the different scheduling strategies will 

differ as follows. 

Static scheduling: Here, a static partitioning of the population is applied. For instance, the 

population is decomposed into equal size partitions depending on the number of processors of 

the parallel homogeneous non-shared machine. A static mapping between the partitions and 

the processors is realised. For a heterogeneous non-shared machine, the size of each partition 

needs to be initialised according to the performance of the processors. The static scheduling 

strategy is not efficient for variable computational costs of equal partitions. This happens for 

optimisation problems where different costs are associated to the evaluation of solutions. For 

instance, in genetic programming individuals may widely vary in size and complexity. This 

makes a static scheduling of the parallel evaluation of the individuals not efficient. 

Dynamic scheduling: A static partitioning is applied but a dynamic migration of tasks can be 

carried out depending on the varying load of processors. The number of tasks generated may 

be equal to the size of the population. Many tasks may be mapped on the same processor. 

Hence, more flexibility is obtained for the scheduling algorithm. For instance, the approach 

based on the master-worker cycle stealing may be applied. To each worker is first allocated a 

small number of solutions. Once it has performed its iterations the worker requests from the 

master additional solutions. All the workers are stopped once the final result is returned. Faster 

and less loaded processors handle more solutions than the others. This approach allows to 

reduce the execution time compared to the static one. 

Adaptive scheduling: The objective in this model is to adapt the number of partitions generated 

to the load of the target architecture. More efficient scheduling strategies are obtained for 

shared, volatile and heterogeneous parallel architectures such as desktop grids. 
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Fault-tolerance: The memory of the iteration-level parallel model required for the 

checkpointing mechanism is composed of different partitions. The partitions are composed of 

a set of (partial) solutions and their associated objective values. 

3.7 Solution-level parallel model 
Granularity: This parallel model has a fine granularity. There is a relatively high 

communication requirement for this model. In the functional decomposition parallel model, the 

granularity will depend on the ratio between the evaluation cost of the sub-functions and the 

communication cost of a solution. In the data decomposition parallel model, it depends on the 

ratio between the evaluation of a data partition and its communication cost. 

The fine granularity of this model makes it less suitable for large-scale distributed architectures 

where the communication cost (in terms of latency and/or bandwidth) is relatively important, 

such as in grid computing systems. Indeed, its implementation is often restricted to clusters or 

network of workstations or shared memory machines. 

Scalability: The degree of concurrency of this parallel model is limited by the number of sub-

functions or data partitions. Although its scalability is limited, the use of the solution-level 

parallel model in conjunction with the two other parallel models enables to extend the 

scalability of a parallel MOEA. 

Synchronous versus asynchronous communications: The implementation of the solution-level 

parallel model is always synchronous following the master-worker paradigm. Indeed, the 

master has to wait for all partial results to compute the global value of the objective functions. 

The execution time T will be bounded by the maximum time TI of the different tasks. An 

exception occurs for hard-constrained optimisation problems, where feasibility of the solution 

is first tested. The master terminates the computations as soon as a given task detects that the 

solution does not satisfy a given hard constraint. Due to its heavy synchronisation steps, this 

parallel model is worth applying to problems in which the calculations required at each iteration 

are time consuming. 
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The relative speedup may be approximated as follows: 𝑆% = 	
(

∝345
 , where α is the 

communication cost. 

Scheduling: In the solution-level parallel model, tasks correspond to sub-functions in the 

functional decomposition and to data partitions in the data decomposition model. Hence, the 

different scheduling strategies will differ as follows: 

• Static scheduling: Usually, the sub-functions or data are decomposed into equal-size 

partitions depending on the number of processors of the parallel machine. A static 

mapping between the sub-functions (or data partitions) and the processors is applied. 

As for the other parallel models, this static scheme is efficient for parallel homogeneous 

non-shared machines. For a heterogeneous non-shared machine, the size of each 

partition in terms of sub-functions or data needs to be initialized according to the 

performance of the processors. 

• Dynamic scheduling: Dynamic load balancing will be necessary for shared parallel 

architectures or variable costs for the associated sub-functions or data partitions. 

Dynamic load balancing may be easily achieved by evenly distributing at run-time the 

sub-functions or the data among the processors. In optimisation problems, where the 

computing cost of the sub-functions is unpredictable, dynamic load balancing is 

necessary. Indeed, a static scheduling cannot be efficient because there is no appropriate 

estimation of the task costs (i.e. unpredictable cost). 

• Adaptive scheduling: In adaptive scheduling, the number of sub-functions or data 

partitions generated is adapted to the load of the target architecture. More efficient 

scheduling strategies are obtained for shared, volatile and heterogeneous parallel 

architectures such as desktop grids. 

Fault-tolerance: The memory of the solution-level parallel model required for the 

checkpointing mechanism is straightforward. It is composed of the solution(s) and their partial 

objective value calculations. 

Depending on the target parallel architecture, Table 3 presents a general guideline for the 

efficient implementation of the different parallel models of MOEAs. For each parallel model 
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(algorithmic-level, iteration-level, solution-level), the table shows its characteristics according 

to the outlined criteria (granularity, scalability, asynchronism, scheduling, and fault-tolerance). 

Table 3. Efficient implementation of parallel MOEAs according to some performance 

metrics and used strategies 

Property Algorithmic-level Iteration-level Solution-level 

Granularity Coarse Medium Fine 

 (Frequency of exchange, (Nb. of solutions (Eval. sub-functions, 

 size of information) per partition) eval. data partitions) 

Scalability Number Neighbourhood size, Nb. of sub-functions, 

 of MOEAs populations size nb. data partitions 

Asynchronism High Moderate Exceptional 

 (Information exchange) (Eval. of solutions) (Feasibility test) 

Scheduling and MOEA Solution(s) Partial 

fault-tolerance   solution(s) 
    

 

4 Conclusion 
Parallel and distributed computing can be used in the design and implementation of MOEAs 

to speed up the search, to improve the quality of the obtained solutions, to improve the 

robustness, and to solve large scale problems. The clear separation between parallel design and 

parallel implementation aspects of MOEAs is important to analyse parallel MOEAs. The most 

important lessons of this tutorial can be summarised as follows: 

• In terms of parallel design, the different parallel models for MOEAs have been unified. 

Three hierarchical parallel models have been extracted: algorithmic-level, iteration-

level and solution-level parallel models. 
• In terms of parallel implementation, the question of an efficient mapping of a parallel 

model of MOEAs on a given parallel architecture and programming environment (i.e. 

language, library, middleware) is handled. The focus was made on the key criteria of 
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parallel architectures that influence the efficiency of an implementation of parallel 

MOEAs. 
One of the perspectives in the coming years is to achieve Exascale performance. The 

emergence of heterogeneous platforms composed of multi-core chips and many-core chips 

technologies will speed up the achievement of this goal. In terms of programming models, 

cloud computing will become an important alternative to traditional high performance 

computing for the development of large-scale MOEAs that harness massive computational 

resources. This is a great challenge as nowadays cloud frameworks for parallel MOEAs are 

just emerging. 

In the future design of high-performance computers, the ratio between power and performance 

will be increasingly important. The power represents the electrical power consumption of the 

computer. An excess in power consumption uses unnecessary energy, generates waste heat and 

decreases reliability. Very few vendors of high-performance architectures publicise the power 

consumption data compared to the performance data. 

In terms of target optimisation problems, parallel MOEAs constitute unavoidable approaches 

to solve large scale real-life challenging problems (e.g. engineering design, data mining). They 

are also an important alternative to solve dynamic and uncertain optimisation MOPs, in which 

the complexities in terms of time and quality are more difficult to handle by traditional 

sequential approaches. Moreover, parallel models for MOPs with uncertainty have to be deeply 

investigated. 

All tutorial materials will be available at http://synergy-twinning.eu/events/training. 
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Appendix: Tutorial handouts 
This appendix includes the materials used so far to present the content of this tutorial to the 

project members and interested audience at research institutions in Slovenia.  

The following tutorial handouts are included:  

• handouts on multi-objective optimisation, 

• handouts on parallel multi-objective optimisation, and 

• handouts on the use of a parallel testbed called Grid’5000. 
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Metaheuristics for Multi-objective 
Optimization: A Unified View

Prof. El-Ghazali Talbi 

http://www.lifl.fr/~talbi
El-ghazali.talbi@univ-lille1.fr
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Outline

• Multi-objective optimization: definitions, problems, 
etc

• A unified view of multi-objective metaheuristics

• Landscapes and performance analysis

• Software framework for multi-objective 
optimization: ParadisEO-MOEO
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Multiobjective Optimization Problem (MOP)

• n ≥ 2 objective functions (f1, f2, …, fn)

• x Є X is a decision vector

• X is the feasible set in the decision space

• Z is the feasible set in the objective space
f

decision space objective space

x1

x2

f2

f3

f1

X Z = f(X)

(MOP) =
« min » f(x) = (f1(x), f2(x), …, fn(x))

s. t. x Є X
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Pareto dominance [Pareto 1896]

An objective vector z Є Z dominates an objective vector z’ Є Z iff
• ∀i Є {1,…,n}, zi ≤ zi’
• ∃j Є {1,…,n}, zj < zj’

objective space f1

f2

A

B

C

A > B

B ~ C

A ~ C

f1

f2

Non-dominated solution
(eligible, efficient, non
inferior, Pareto optimal)
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Multi-objective Optimization Problem (MOP)

x2

x1X: decision space

f2

f1Z : objective space

non-dominated vector

dominated vectorefficient solution

efficient set

Pareto front
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Multi-objective optimization problems

• Academic problems
• Continuous optimization: ZDT, CTP, DTLZ, 
• Combinatorial optimization problems

– Polynomially problems (assignment, spanning tree, shortest path)
– NP-hard problems (TSP, QAP, knapsack, routing, scheduling)

• Real-life applications
• Engineering design
• Environment and energetics
• Telecommunications
• Control
• Bioinformatics and computational biology
• Transportation and logistics
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Resolution Approaches

Multiobjective optimization as a part of the decision making process:

A priori
• Decision Maker (DM) before the resolution process 

A posteriori
• Decision Maker (DM) after the resolution process

Interactive
• Decision Maker (DM) during the resolution process

a priori
knowledge DM

preferences
solver results

acquired knowledge
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Resolution Methodologies

• Exact Methods
• Problems of small size or 

specific structure

• Metaheuristics
• Find a good approximation  of 

the efficient set (or Pareto 
front)

• Metaheuristics able to find 
multiple non-dominated 
solutions in a single run

exact
methods

heuristics

metaheuristicsproblem-specific
heuristics

single solution population

approximate
methods

approximation
methods

resolution
methodologies
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Approximating an efficient set is itself a bi-objective problem

• Min the distance to the Pareto front
è well-converged efficient set approximation

• Max the diversity in the objective space (and/or decision space)
è well-diversified efficient set approximation

What is a Good Approximation?

well-converged well-diversified well-converged
AND

well-diversified

Approximation
Pareto front

f1

f2

f1

f2

f1

f2
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Genealogy of Metaheuristics
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The number of multi-objective metaheuristics is 
growing exponentially !

- Very active research in the last two decades
- For each metaheuristic (e.g. EA, PSO, LS, TS, SA, ACO) :

- Hundreds of different designs
- Hundreds of different implementations

- Give you the Catalog of the proposed algorithms : I don’t like it
- May be bigger than a dictionary

- May have:
- MO Evolutionary Algorithm 1 # MO Evolutionary Algorithm 2
- MO Evolutionary Algorithm = MO Scatter Search 1 = MO PSO 1
- MO Local Search 1 # MO Local Search 2
- MO Iterated Local Search = MO GRASP 
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Just some algorithms: Compare with all those 
algorithms !

SSPMO

MOSS

PLS-1

MOTS

TAPaS MOSA

VEGA

NSGA NSGA-II

SPEA-2

MOGA

SPEA

IBEA

MOGP

PAES

PLS-2

moRBC

SEEA

MOES

MOEA

MOSA-2MOLSANT-Q P-ACO

MOMGA

NPGA MOPSO
MODE

MO-CMA-ES

FASTPGA

MOAQ

DMLS

IBMOLS

MOACOMONACO

COMPETants

MOACOM

SACOACOAMO

MACS

MO-PACO

WBGA

RWGA

PESA

MEA

PESA2

Micro-GA

RDGA

DMOEA

E-MOEA

NPGA

MOEA-D

MOGLS

RM-MEDA

MIDEA
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Motivations

è A unified view
• Design and Implementation

• Fine-grained decomposition of 
search mechanisms

• Common terminology and 
classification

• Comparison of approaches 
(experimental analysis)

• New approaches

Population
based

Single solution
based

metaheuristics for
multiobjective optimization

ParadisEO-MOEO

Combinatorial and continuous MOP

design

implementation

application

problem-dependent
Multi-objective-specific
metaheuristic-specific

14

A unified design view

14
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Development process of a multi-objective 
metaheuristic

16
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Design issues of multi-objective metaheuristics

• Fitness assignment
• Guide the search towards Pareto optimal solutions for a better 

convergence.

• Diversity preserving
• Generate a diverse set of Pareto solutions in the objective space and/or 

the decision space.

• Elitism:
• Preservation and use of elite solutions. 
• Allows a robust, fast and a monotically improving performance of a 

metaheuristic

17
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Fitness Assignment

• Scalar approaches
• Transformation to mono-objective problem(s)

• Criterion-based approaches
• Each objective is treated separately

• Dominance-based approaches
• The concept of dominance is used

• Indicator-based approaches
• Use performance indicators to drive the search

18
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Scalar approaches

• Aggregation methods
• Weighted metrics

• Goal programming
• ε-constraint approach
• Achievement functions

• Goal attainment
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Aggregation Metaheuristics

• Weights: Static, Multiple, Dynamic, Adaptive

• Genetic algorithms [Hajela et Lin 92]

• Individual representation: solution + λ
• Goal: generating various Pareto solutions

• Simulated annealing [Serafini 92]

• Acceptance probability 

• Tabu search [Dahl et al. 95]

• Hybrid metaheuristics [Talbi 98]

• Greedy algorithm + Simulated annealing [Tuyttens 98]

• Genetic algorithm (Local search) [Ishibuchi et Murata 98]

– Selection with different weights
– Local search on the produced individual (same weights)

20
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Criterion-based Approaches: Sequential

• Sequential approach: Objectives are handled in sequential 
• Lexicographic selection (priority order)

• Tabu search, Genetic algorithms [Fourman 85]
• Evolutionary strategies [Kursawe 91], …

21
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Criterion-based Approaches: Parallel
• Parallel approach: Objectives are handled in parallel
• Parallel selection (VEGA) [Schaffer 85]

• Multi-sexual reproduction [Lis & Eiben 96]
• One class per objective
• Reproduction (crossover) over several individuals

• Ant colonies (pheromone/objective)
è Tends to ignore compromised solutions

population population

sub-population 1

sub-population n

obj. 1

obj. n

selection / reproduction crossover / mutation

22
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Dominance-based Approaches

• Dominance relation used during the fitness 
assignment process:

• Pareto dominance
• Weak dominance
• Strict dominance
• ε-dominance [Helbig & Pateva 1994]

• g-dominance [Molina et al. 2009]    

• Guided domination
• Fuzzy dominance

• …
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Fitness assignment: Pareto ranking

• Pareto-based fitness assignment strategies
• Dominance rank (e.g. used in MOGA)

– Number of solutions which dominates the solution
• Dominance depth (e.g. used in NSGA and NSGA-II)
• Dominance count (e.g. combined with dominance rank 

in SPEA and SPEA2)
– Number of solutions dominated by the solution

23
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Indicator-Based Fitness Assignment

Solutions compared on the basis of a binary quality indicator I

Fitness (A) = usefulness of A according to the optimization goal (I)

Examples of binary quality indicators:

I(A,B) > 0

I(B,A) > 0

A

B I(A,B) > 0

I(B,A) > 0

A

B

24

Additive epsilon indicator (IЄ+) Hypervolume indicator (IHD) 

[Zitzler & Künzli 04]


