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Abstract This paper describes a general overview of parallel multi-objective evo-
lutionary algorithms (MOEA) from the design and the implementation
point of views. A unified taxonomy using three hierarchical parallel
models is proposed. Different parallel architectures are considered. The
performance evaluation issue of parallel MOEA is also discussed.
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1. Motivation

On one hand, multi-objective optimization problems (MOPs), such as
in engineering design and life science, are more and more complex and
their resource requirements to solve them are ever increasing. Real-life
MOPs are often NP-hard, and CPU time and/or memory consuming.
Although the use of multi-objective evolutionary algorithms (MOEAs)
allows to significantly reduce the computational complexity of the solv-
ing algorithms, the latter remains time-consuming for many MOPs in
diverse domains of application, where the objective function and the
constraints associated to the problem are resource (e.g., CPU, memory)
intensive and the size of the search space is huge. Moreover, more and
more complex and resource intensive MOEAs are developed to obtain a
good approximation of the Pareto front in a reasonable time.

On the other hand, the rapid development of technology in design-
ing processors (e.g., multi-core processors, dedicated architectures), net-
works (local networks (LAN) such as Myrinet and Infiniband or wide
area networks (WAN) such as optical networks), and data storage make
the use of parallel computing more and more popular. Such architectures
represent an effective opportunity for the design and implementation of
parallel multi-objective optimization algorithms. Indeed, sequential ar-
chitectures are reaching physical limitations (speed of light, thermody-
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namics). Nowadays, even laptops and workstations are equipped with
multi-core processors, which represent one class of parallel architecture.
Moreover, the ratio cost/performance is constantly decreasing. The pro-
liferation of powerful processors and fast communication networks have
shown the emergence of dedicated architectures (e.g GPUs), clusters of
processors (COWs), networks of workstations (NOWs), large-scale net-
works of machines (Grids) and Clouds as platforms for high performance
computing.

Parallel computing can be used in the design and implementation of
MOEAs for the following reasons:

Speedup the search to approximate the Pareto front: The
goal here is to reduce the search time. This helps designing in-
teractive optimization methods which is an important issue for
multi-criteria decision making. This is a also an important aspect
for some class of problems where there are hard requirements on
search time such as in dynamic MOPs and time-critical operational
MOPs such as “real-time” planning and control.

Improve the quality of the obtained Pareto solutions: some
parallel models for MOEAs allow to improve the quality of Pareto
solutions. Indeed, exchanging information between algorithms will
alter their behavior in terms of searching in the landscape associ-
ated to the MOP. The main goal in a cooperation between algo-
rithms is to improve the quality of Pareto solutions. Both con-
vergence to better Pareto solutions and reduced search time may
happen. Let us notice that a parallel model for MOEAs may be
more effective than a sequential algorithm even on a single proces-
sor.

Improve the robustness: a parallel MOEA may be more robust
in terms of solving in an effective manner different MOPs and dif-
ferent instances of a given problem. Robustness may be measured
in terms of the sensitivity of the algorithm to its parameters and
the target MOPs.

Solve large scale MOPs: parallel MOEAs allow to solve large
scale instances of complex MOPs. A challenge here is to solve
very large instances that cannot be solved on a sequential machine.
Another similar challenge is to solve more accurate mathematical
models associated to different MOPs. Improving the accuracy of
mathematical models increases in general the size of the associ-
ated problems to be solved. Moreover, some optimization prob-
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lems need the manipulation of huge databases such as data mining
problems.

In this paper, a clear difference is made between the parallel design
aspect and the parallel implementation aspect of MOEAs. A unifying
view of parallel models for MOEAs is presented. The implementation
point of view deals with the efficiency of parallel MOEAs on a target
parallel architecture using a given parallel language, programming en-
vironment or middleware. Different architectural criteria, which affect
the efficiency of the implementation, will be considered: shared memory
versus distributed memory, homogeneous versus heterogeneous, shared
versus non shared by multiple users, local network versus large network.
Indeed, those criteria have a strong impact on the deployment tech-
nique employed such as load balancing and fault-tolerance. Depend-
ing on the type of parallel architecture used, different parallel and dis-
tributed languages, programming environments and middlewares may be
used such as message passing (e.g., MPI), shared memory (e.g., multi-
threading, OpenMP, CUDA), remote procedural call (e.g., Java RMI,
RPC), high-throughput computing (e.g., Condor), and grid computing
(e.g., Globus).

This paper is organized as follows. In Section 2, the main parallel
models for designing MOEAs are presented. Section 3 deals with the
implementation issues of parallel MOEAs. In this section, the main
concepts of parallel architectures and parallel programming paradigms,
which interfere with the design and implementation of parallel MOEAs
are outlined. The main performance indicators that can be used to eval-
uate a parallel multi-objective search algorithms in terms of efficiency
are detailed.

2. Parallel Design of Multi-Objective
Metaheuristics

In terms of designing parallel MOEAs, three major parallel models
are identified. They follow the three hierarchical levels (Table 1):

Algorithmic-level: in this model, independent or cooperating
self-contained MOEAs are used. It is a problem-independent inter-
algorithm parallelization. If the different MOEAs are independent,
the search will be equivalent to the sequential execution of the
algorithms in terms of the quality of Pareto solutions. However,
the cooperative model will alter the behavior of the MOEAs and
enable the improvement in terms of the quality of Pareto solutions.
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Iteration-level: in this model, each iteration of a MOEA is par-
allelized. It is a problem-independent intra-algorithm paralleliza-
tion. The behavior of the MOEA is not altered. The main ob-
jective is to speedup the algorithm by reducing the search time.
Indeed, the iteration cycle of MOEAs on large populations, espe-
cially for real-world MOPs, requires a large amount of computa-
tional resources.

Solution-level: in this model, the parallelization process handles
a single solution of the search space. It is a problem-dependent
intra-algorithm parallelization. In general, evaluating the objective
functions or constraints for a generated solution is frequently the
most costly operation in MOEAs. In this model, the behavior of
the search algorithm is not altered. The objective is mainly the
speedup of the search.

Table 1: Parallel models of MOEAs.

Parallel Problem Behavior Granularity Goal
model dependency

Algorithmic-level Independent Altered MOP algorithm Effectiveness
Iteration-level Independent Non altered Iteration Efficiency
Solution-level Dependent Non altered Solution Efficiency

2.1 Algorithmic-Level Parallel Model

In this model, many MOEAs are launched in parallel. They may
cooperate or not to solve the target MOPs.

2.1.1 Independent algorithmic-level parallel model. In
the independent-level parallel model, the different MOEAs are executed
without any cooperation. The different MOEAs may be initialized with
different populations. Different parameter settings may be used for the
MOEAs such as the mutation and crossover probabilities. Moreover,
each search component of an MOEA may be designed differently: encod-
ing, search operators (e.g., variation operators), objective functions, con-
straints, fitness assignment, diversity preserving, elitism. This parallel
model is straightforward to design and implement. The master/worker
paradigm is well suited to this model. A worker implements an MOEA.
The master defines the different parameters to use by the workers and
determines the best found Pareto solutions from those obtained by the
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different workers. In addition to speeding up the MOEA, this parallel
model enables to improve its robustness [29].

This model raises particularly the following question: is it equivalent
to execute k MOEAs during a time t and to execute a single MOEA
during k ∗ t? The answer depends on the landscape properties of the
problem (e.g., distribution of the Pareto local optima).

2.1.2 Cooperative algorithmic-level parallel model. In the
cooperative model for parallel MOEAs, the different MOEAs are ex-
changing information related to the search with the intent to compute
a better and more robust Pareto front [30]. In general, an archive is
maintained in parallel to the current population. This archive contains
all Pareto optimal solutions generated during the search.

In designing this parallel cooperative model for any MOEA, the same
design questions need to be answered:

The exchange decision criterion (When?): the exchange of
information between the MOEAs can be decided either in a blind
(periodic or probabilistic) way or according to an “intelligent”
adaptive criterion. Periodic exchange occurs in each algorithm
after a fixed number of iterations; this type of communication is
synchronous. Probabilistic exchange consists in performing a com-
munication operation after each iteration with a given probability.
Conversely, adaptive exchanges are guided by some characteristics
of the multi-objective search. For instance, it may depend on the
evolution of the quality of the Pareto front. A classical criterion is
related to the update of the archive, in which a new Pareto solution
is generated.

The exchange topology (Where?): the communication ex-
change topology indicates for each MOEA its neighbor(s) regard-
ing the exchange of information, i.e., the source/destination algo-
rithm(s) of the information. The ring, mesh and hypercube regular
topologies are the most popular ones.

The information exchanged (What?): this parameter spec-
ifies the information to be exchanged between the MOEAs. In
general, the information exchanged is composed of:

– Pareto solutions: this information deals with any selection
strategy of the generated Pareto solutions during the search.
In general, it contains solutions from the current population
and/or the archive. The number of selected Pareto optimal
solutions may be an absolute value or a percentage of the sets.
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– Search memory: this information deals with a search memory
of a MOEA excluding the Pareto optimal solutions. This
information deals with any element of the search memory
that is associated to the involved MOEA.

The integration policy (How?): analogously to the informa-
tion exchange policy, the integration policy deals with the usage
of the received information. In general, there is a local copy of
the received information. The local copies of the information re-
ceived are generally updated using the received ones. The Pareto
solutions received will serve to update the local Pareto archive.
For the current population, any replacement strategy can be used
(e.g., random, elitist). For instance, the best Pareto set is simply
updated by the best between the local best Pareto set and the
neighboring best Pareto set. Any replacement strategy may be
applied on the local population by the set of received solutions.

Few of such parallel search models have been especially designed for
multi-objective optimization [29].

The other well known parallel model for MOEAs, the cellular model.
may be seen as a special case of the island model where an island is
composed of a single individual. Traditionally, an individual is assigned
to a cell of a grid. The selection occurs in the neighborhood of the indi-
vidual. Hence, the selection pressure is less important than in sequential
MOEAs. The overlapped small neighborhood in cellular MOEAs helps
exploring the search space because a slow diffusion of Pareto solutions
through the population provides a kind of exploration, while exploita-
tion takes place inside each neighborhood. Cellular models applied to
complex problems can have a higher convergence probability to better
solutions than panmictic MOEAs [17].

The different MOEAs involved in the cooperation may evaluate dif-
ferent subsets of objective functions (Fig. 1). For instance, each MOEA
may handle a single objective. Another approach consists in using a dif-
ferent aggregation weights in each MOEA, or different constraints [22].

Each MOEA may also represent a different partition of the decision
space or the objective space [15, 27]. By this way, each MOEA is destined
to find a particular portion of the Pareto-optimal front.

Another main issue in the development of parallel MOPs is how the
Pareto set is built during the optimization process. Two different ap-
proaches may be considered (Fig. 1):

Centralized Pareto Front : the front is a centralized data structure
of the algorithm that it is built by the MOEAs during the whole



Parallel Multi-Objective Evolutionary Algorithms 27

Figure 1: Classification of parallel MOEAs for multi-objective optimization.

computation. This way, the new non-dominated solutions in the
Pareto optimal set are global Pareto optima [1, 5, 28].

Distributed Pareto Front : the Pareto front is distributed among
the MOEAs so that the algorithm works with local non-dominated
solutions that must be somehow combined at the end of their work
[8, 18, 19]. No pure centralized approach has been found clearly
motivated by efficiency issues [16]. All the found centralized ap-
proaches are combined with distributed phases where local non-
dominated solutions are considered. After each distributed phase,
a single optimal Pareto front is built by using these local Pareto
optima. Then, the new Pareto front is again distributed for local
computation, and so on.

2.2 Iteration-Level Parallel Model

In this parallel model, a focus is made on the parallelization of each
iteration of MOEAs. The iteration-level parallel model is generally based
on the distribution of the handled solutions. Indeed, the most resource-
consuming part in an MOEA is the evaluation of the generated solutions.
Our concerns in this model are only search mechanisms that are problem-
independent operations such as the generation of successive populations.
Any search operator of an MOEA which is not specific to the tackled
optimization problem is involved in the iteration-level parallel model.
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This model keeps the sequentiality of the original algorithm, and, hence,
the behavior of the MOEA is not altered.

It is the easiest and the most widely used parallel model in MOPs. In-
deed, many MOPs are complex in terms of the objective functions. For
instance, some engineering design applications integrate solvers dealing
with different surrogate models: computational fluid dynamics (CFD),
computational electromagnetics (CEM), or finite element methods (FEM).
Other real-life applications deals with complex simulators. A particu-
larly efficient execution is often obtained when the ratio between com-
munication and computation is high. Otherwise, most of the time can
be wasted in communications, leading to a poor parallel algorithm.

The population of individuals can be decomposed and handled in par-
allel. In master-worker a master performs the selection operations and
the replacement. The selection and replacement are generally sequen-
tial procedures, as they require a global management of the population.
The associated workers perform the recombination, mutation and the
evaluation of the objective function. The master sends the partitions
(subpopulations) to the workers. The workers return back newly evalu-
ated solutions to the master [19] (Fig. 2).

Figure 2: The iteration-level parallel model in parallel MOEAs.

According to the order in which the evaluation phase is performed
in comparison with the other parts of the MOEA, two modes can be
distinguished:
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Synchronous: in the synchronous mode, the worker manages
the evolution process and performs in a serial way the different
steps of selection and replacement. At each iteration, the master
distributes the set of new generated solutions among the workers
and waits for the results to be returned back. After the results
are collected, the evolution process is re-started. The model does
not change the behavior of the MOEA compared to a sequential
model.

Asynchronous: in the asynchronous mode, the worker does not
wait for the return of all evaluations to perform the selection, re-
production and replacement steps. The steady-state MOEA is a
good example illustrating the asynchronous model and its advan-
tages. In the asynchronous model applied to a steady-state MOEA,
the recombination and the evaluation steps may be done concur-
rently. The master manages the evolution engine and two queues
of individuals of a given fixed size: individuals to be evaluated,
and solutions being evaluated. The individuals of the first queue
wait for a free evaluating node. When the queue is full the process
blocks. The individuals of the second queue are assimilated into
the population as soon as possible. The reproduced individuals are
stored in a FIFO data structure, which represents the individuals
to be evaluated. The MOEA continues its execution in an asyn-
chronous manner, without waiting for the results of the evaluation
phase. The selection and reproduction phase are carried out un-
til the queue of non-evaluated individuals is full. Each evaluator
agent picks an individual from the data structure, evaluates it, and
stores the results into another data structure storing the evaluated
individuals. The order of evaluation defined by the selection phase
may not be the same as in the replacement phase. The replace-
ment phase consists in receiving, in a synchronous manner, the
results of the evaluated individuals, and applying a given replace-
ment strategy of the current population.

In some MOEAs (e.g., blackboard-based ones) some information must
be shared. For instance, in ant colony optimization (ACO), the phero-
mone matrix must be shared by all ants. The master has to broadcast
the pheromone trails to each worker. Each worker handles an ant pro-
cess. It receives the pheromone trails, constructs a complete solution,
and evaluates it. Finally, each worker sends back to the master the
constructed and evaluated solution. When the master receives all the
constructed solutions, it updates the pheromone trails [14].
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Ranking methods are used to assign a fitness to each solution of a
population. Those ranking methods are computation-intensive and may
be also parallelized. Updating the archives at each iteration is also a
time consuming task.

2.3 Solution-Level Parallel Model

The main objective of the solution-level parallel model for MOP is to
speedup the search by parallelizing the treatments dealing with single so-
lutions (e.g., objectives evaluation, constraint satisfaction). Indeed, the
evaluation of multiple objective functions in MOPs is the most time-
consuming part into a MOEA. Therefore, several algorithms try to re-
duce this time by means of parallelizing the calculation of the fitness
evaluation [21, 22, 23]. The classical approaches must be adapted to
multi-objective optimization (Fig. 1):

Functional decomposition: this approach consists in distribut-
ing the different objective functions among the workers, and each
of them computes the value of its assigned function on each solu-
tion. The master will then aggregate the partial results for all the
solutions. Such approach allows a degree of concurrency and the
scalability is limited to the number of objective functions, meaning
often 2 or 3. Moreover, each objective function may be decomposed
into several sub-functions. Then, the degree of concurrency will be
equal to the number of sub-functions.

Data decomposition: for each data partition of the problem
(database, geographical area, structure, . . . ), all the objectives of
the problem are evaluated and returned to the master. The master
will aggregate the different results.

In the multi-objective context, the scalability of this model is limited
by the number of objectives and the number of sub-functions per objec-
tive. The scalability could be improved again if the different objective
functions are simultaneously parallelized.

2.4 Hierarchical Combination of the Parallel Models

The three presented models for parallel MOEAs may be used in con-
junction within a hierarchical structure [26]. The parallelism degree
associated with this hybrid model is very important. Indeed, this hy-
brid model is very scalable; the degree of concurrency is k ∗m∗n, where
k is the number of MOEAs used, m is the size of the population, and
n is the number of partitions or tasks associated to the evaluation of a
single solution.
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3. Parallel Implementation of MOEAs

Parallel implementation of MOEAs deals with the efficient mapping
of a parallel model of MOEAs on a given parallel architecture.

3.1 Parallel Architectures

Parallel architectures are evolving quickly. The main criteria of par-
allel architectures, which will have an impact on the implementation of
parallel MOEAs, are: memory sharing, homogeneity of resources, re-
source sharing by multiple users, scalability, and volatility. Those crite-
ria will be used to analyze the different parallel models and their efficient
implementation. A guideline is given for the efficient implementation of
each parallel model of MOEAs according to each class of parallel archi-
tectures.

Shared memory/Distributed memory architectures: in shared
memory parallel architectures, the processors are connected by a shared
memory. There are different interconnection schemes for the network
(e.g., bus, crossbar, multistage crossbar). This architecture is easy to
program. Conventional operating systems and programming paradigms
of sequential programming can be used. There is only one address space
for data exchange but the programmer must take care of synchronization
in memory access, such as the mutual exclusion in critical sections. This
type of architecture has a poor scalability (from 2 to 128 processors
in current technologies) and a higher cost. An example of such shared
memory architectures are SMPs (Symmetric Multiprocessors) machines
and multi-core processors.

In distributed memory architectures, each processor has its own mem-
ory. The processors are connected by a given interconnection network
using different topologies (e.g., hypercube, 2D or 3D torus, fat-tree, mul-
tistage crossbars). This architecture is harder to program; data and/or
tasks have to be explicitly distributed to processors. Exchanging infor-
mation is also explicitly handled using message passing between nodes
(synchronous or asynchronous communications). The cost of communi-
cation is not negligible and must be minimized to design an efficient par-
allel MOEA. However, this architecture has a good scalability in terms of
the number of processors. In recent years, clusters of processors (COWs)
became one of the most popular parallel distributed memory architec-
tures. A good ratio between cost and performance is obtained with this
class of architectures.

Homogeneous/Heterogenous parallel architectures: parallel
architectures may be characterized by the homogeneity of the used pro-
cessors, communication networks, operating systems, etc. For instance,
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COWs are in general homogeneous parallel architectures. The prolifer-
ation of powerful workstations and fast communication networks have
shown the emergence of heterogeneous networks of workstations (NOWs)
as platforms for high performance computing. This type of architecture
is present in any laboratory, company, campus, institution, etc. These
parallel platforms are generally composed of an important number of
owned heterogeneous workstations shared by many users.

Shared/Non shared parallel architectures: most massively par-
allel machines (MPP) and clusters of workstations (COW) are generally
non shared by the applications. Indeed, at a given time, the proces-
sors composing those architectures are dedicated to the execution of a
single application. NOWs constitute a low-cost hardware alternative to
run parallel algorithms but are in general shared by multiple users and
applications.

Local network (LAN)/Wide-area network (WAN): massively
parallel machines, clusters and local networks of workstations may be
considered as tightly coupled architectures. Large networks of worksta-
tions and grid computing platforms are loosely coupled and are affected
by a higher cost of communication. During the last decade, grid com-
puting systems have been largely deployed to provide high performance
computing platforms. A computational grid is a scalable pool of hetero-
geneous and dynamic resources geographically distributed across mul-
tiple administrative domains and owned by different organizations [9].
Two types of Grids may be distinguished:

High-Performance Computing Grid (HPC Grid): this grid
interconnect supercomputers or clusters via a dedicated high-speed
network. In general, this type of grid is non-shared by multiple
users (at the level of processors).

Desktop Grid: this class of grids is composed of numerous owned
workstations connected via non dedicated network such as the in-
ternet. This grid is volatile and shared by multiple users and
applications.

Volatile/Non volatile parallel architectures: desktop grids con-
stitute an example of volatile parallel architectures. In a volatile parallel
architecture, there is a dynamic temporal and spatial availability of re-
sources. In a desktop grid or a large network of shared workstations,
volatility is not an exception but a rule. Due to the large scale nature of
the grid, the probability of resource failure is high. For instance, desktop
grids have a faulty nature (e.g., reboot, shutdown, failure).

The following table 2 recapitulates the characteristics of the main par-
allel architectures according to the presented criteria. Those criteria will
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be used to analyze the efficient implementation of the different parallel
models of MOEAs.

Table 2: Characteristics of the main parallel architectures.

Criteria Memory Homogeneity Sharing Network Volatility

SMP Multi-core Shared Hom Yes or No Local No
COW Distributed Hom or Het No Local No
NOW Distributed Het Yes Local Yes
HPC Grid Distributed Het No Large No
Desktop Grid Distributed Het Yes Large Yes

Hom: Homogeneous, Het: Heterogeneous.

3.2 Dedicated Architectures

Dedicated hardware represents programmable hardware or specific ar-
chitectures that can be designed or re-used to execute a parallel MOEA.
The best known dedicated hardware is represented by Field Programmable
Gate Arrays (FPGAs) and Graphical Processing Unit (GPU).

FPGAs are hardware devices that can be used to implement digital
circuits by means of a programming process [31]. The use of the Xilinx’s
FPGAs to implement different MOEAs is more and more popular. The
design and the prototyping of a FPGA-based hardware board to execute
parallel MOEAs may restrict the design of some search components.
However, for some specific challenging optimization problems with a
high use rate such as in bioinformatics, dedicated hardware may be a
good alternative.

GPU is a dedicated graphics rendering device for a workstation, per-
sonal computer, or game console. Recent GPUs are very efficient at ma-
nipulating computer graphics, and their parallel SIMD structure makes
them more efficient than general-purpose CPUs for a range of complex
algorithms [2]. The main companies producing GPUs are AMD and
NVIDIA. The use of GPUs for an efficient implementation of MOEAs is
a challenging issue [12, 13].

3.3 Parallel Programming Environments and
Middlewares

The architecture of the target parallel machine strongly influences the
choice of the parallel programming model to use. There are two main
parallel programming paradigms: shared memory and message passing.

Two main alternatives exist to program shared memory architectures:
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Multi-threading: a thread may be viewed as a lightweight pro-
cess. Different threads of the same process share some resources
and the same address space. The main advantages of multi-threa-
ding are the fast context switch, the low resource usage, and the
possible recovery between communication and computation. Each
thread can be executed on a different processor or core. Multi-
threaded programming may be used within libraries such as the
standard Pthreads library [3] or programming languages such as
Java threads [10].

Compiler directives: one of the standard shared memory para-
digms is OpenMP (Open Multi-Processing, www.openmp.org) and
CUDA. It represents a set of compiler directives interfaced with
the languages Fortran, C and C++ [4]. Those directives are inte-
grated in a program to specify which sections of the program to
be parallelized by the compiler.

Distributed memory parallel programming environments are based
mainly on the three following paradigms:

Message passing: message passing is probably the most widely
used paradigm to program parallel architectures. Processes of a
given parallel program communicate by exchanging messages in
a synchronous or asynchronous way. The well known program-
ming environments based on message passing are sockets and MPI
(Message Passing Interface).

Remote Procedure Call: Remote procedure call (RPC) repre-
sents a traditional way of programming parallel and distributed
architectures. It allows a program to cause a procedure to execute
on another processor.

Object oriented models: as in sequential programming, parallel
object oriented programming is a natural evolution of RPC. A
classical example of such a model is Java RMI (Remote Method
Invocation).

In the last decade, great work has been carried out on the development
of grid middlewares. The Globus toolkit (www.globus.org) represents
the de facto standard grid middleware. It supports the development of
distributed service-oriented computing applications [20].

It is not easy to propose a guideline on which environment to use in
programming a parallel MOEA. It will depend on the target architecture,
the parallel model of MOEAs, and the user preferences. Some languages
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are more system oriented such as C and C++. More portability is ob-
tained with Java but the price is less efficiency. This tradeoff represents
the classical efficiency/portability compromise. A Fortran programmer
will be more comfortable with OpenMP. RPC models are more adapted
to implement services. Condor represents an efficient and easy way to
implement parallel programs on shared and volatile distributed architec-
tures such as large networks of heterogeneous workstations and desktop
grids, where fault tolerance is ensured by a checkpoint/recovery mech-
anism. The use of MPI within Globus is more or less adapted to high
performance computing (HPC) grids. However, the user has to deal
with complex mechanisms such as dynamic load balancing and fault-
tolerance. Table 3 presents a guideline depending on the target parallel
architecture.

Table 3: Parallel programming environments for different parallel architectures.

Architecture Examples of suitable programming environment

SMP Multi-threading library within an operating system (e.g., Pthreads)
Multi-core Multi-threading within languages: Java

OpenMP interfaced with C, C++ or Fortran

COW Message passing library: MPI interfaced with C, C++, Fortran

Hybrid ccNUMA MPI or Hybrid models: MPI/OpenMP, MPI/Multi-threading

NOW Message passing library: MPI interfaced with C, C++, Fortran
Condor or object models (JavaRMI)

HPC Grid MPICH-G (Globus) or GridRPC models (Netsolve, Diet)

Desktop Grid Condor-G or object models (Proactive)

3.4 Performance Evaluation

For sequential algorithms, the main performance measure is the exe-
cution time as a function of the input size. In parallel algorithms, this
measure depends also on the number of processors and the characteristics
of the parallel architecture. Hence, some classical performance indica-
tors such as speedup and efficiency have been introduced to evaluate
the scalability of parallel algorithms [11]. The scalability of a parallel
algorithm measures its ability to achieve performance proportional to
the number of processors.

The speed-up SN is defined as the time T1 it takes to complete a
program with one processor divided by the time TN it takes to complete
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the same program with N processors

SN =
T1

TN
.

One can use wall-clock time instead of CPU time. The CPU time is
the time a processor spends in the execution of the program, and the
wall-clock time is the time of the whole program including the input
and output. Conceptually the speed-up is defined as the gain achieved
by parallelizing a program. If SN > N (resp. SN = N), a super-linear
(resp. linear) speedup is obtained [25]. Mostly, a sub-linear speedup
SN < N is obtained. This is due to the overhead of communication and
synchronization costs. The case SN < 1 means that the sequential time
is smaller than the parallel time which is the worst case. This will be
possible if the communication cost is much higher than the execution
cost.

The efficiency EN using N processors is defined as the speed-up SN
divided by the number of processors N .

EN =
SN
N
.

Conceptually the efficiency can be defined as how well N processors are
used when the program is computed in parallel. An efficiency of 100%
means that all of the processors are fully used all the time. For some
large real-life applications, it is impossible to have the sequential time as
the sequential execution of the algorithm cannot be performed. Then,
the incremental efficiency ENM may be used to evaluate the efficiency
extending the number of processors from N to M processors.

ENM =
N × EN
M × EM

.

Different definitions of speedup may be used depending on the defini-
tion of the sequential time reference T1. Asking what is the best measure
is useless; there is no global dominance between the different measures.
The choice of a given definition depends on the objective of the perfor-
mance evaluation analysis. Then, it is important to specify clearly the
choice and the objective of the analysis.

The absolute speedup is used when the sequential time T1 corresponds
to the best known sequential time to solve the problem. Unlike other
scientific domains such as numerical algebra where for some operations
the best sequential algorithm is known, in MOEA search, it is difficult
to identify the best sequential algorithm. So, the absolute speedup is
rarely used. The relative speedup is used when the sequential time T1

corresponds to the parallel program executed on a single processor.



Parallel Multi-Objective Evolutionary Algorithms 37

Moreover, different stopping conditions may be used:

Fixed number of iterations: this condition is the most used to
evaluate the efficiency of a parallel MOEA. Using this definition,
a superlinear speedup is possible SN > N [7]. This is due to
the characteristics of the parallel architecture where there is more
resources (e.g., size of main memory and cache) than in a single
processor. For instance, the search memory of an MOEA executed
on a single processor may be larger than the main memory of
a single processor and then some swapping will be carried out,
which represents an overhead in the sequential time. When using
a parallel architecture, the whole memory of the MOEA may fit in
the main memory of its processors, and then the memory swapping
overhead will not occur.

Convergence to a set of solutions with a given quality:
this measure is interesting to evaluate the effectiveness of a par-
allel MOEA. It is only valid for parallel models of MOEAs based
on the algorithmic-level, which alter the behavior of the sequen-
tial MOEA. A super-linear speedup is possible and is due to the
characteristics of the parallel search. Indeed, the order of search-
ing different regions of the search space may be different from se-
quential search. The sequences of visited solutions in parallel and
sequential search are different. This is similar to the super-linear
speedups obtained in exact search algorithms such as branch and
bound [24].

Most of evolutionary algorithms are stochastic algorithms. When the
stopping condition is based on the quality of the solution, one cannot
use the speedup metric as defined previously. The original definition
may be extended to the average speedup:

SN =
E(T1)

E(TN )
.

The same seed for the generation of random numbers must be used for
a more fair experimental performance evaluation. The speedup metrics
have to be reformulated for heterogeneous architectures. The efficiency
metric may be used for this class of architectures. Moreover, it can be
used for shared parallel machines with multiple users.

3.5 Main Properties of Parallel MOEAs

The performance of a parallel MOEA on a given parallel architecture
depends mainly on its granularity. The granularity of a parallel program
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is the amount of computation performed between two communications.
It computes the ratio between the computation time and the commu-
nication time. The three parallel models (algorithmic-level, iteration-
level, solution-level) have a decreasing granularity from coarse-grained
to fine-grained. The granularity indicator has an important impact on
the speedup. The larger is the granularity the better is the obtained
speedup.

The degree of concurrency of a parallel MOEA is represented by the
maximum number of parallel processes at any time. This measure is in-
dependent from the target parallel architecture. It is an indication of the
number of processors that can employed usefully by the parallel MOEA.
Asynchronous communications and the recovery between computation
and communication is also an important issue for a parallel efficient im-
plementation. Indeed, most of the actual processors integrate different
parallel elements such as ALU, FPU, GPU, DMA, etc. Most of the com-
puting part takes part in cache. Hence, the RAM bus is often free and
can be used by other elements such as the DMA. Hence, input/output
operations can be recovered by computation tasks.

Scheduling the different tasks composing a parallel MOEA is another
classical issue to deal with for their efficient implementation. Different
scheduling strategies may be used depending on whether the number
and the location of works (tasks, data) depend or not on the load state
of the target machine:

Static scheduling: this class represents parallel MOEAs in which
both the number of tasks of the application and the location of
work (tasks, data) are generated at compile time. Static schedul-
ing is useful for homogeneous, and non shared and non volatile
heterogeneous parallel architectures. Indeed, when there are no-
ticeable load or power differences between processors, the search
time of an iteration is derived by the maximum execution time
over all processors, presumably on the most highly loaded proces-
sor or the least powerful processor. A significant number of tasks
are often idle waiting for other tasks to complete their work.

Dynamic scheduling: this class represents parallel MOEAs for
which the number of tasks is fixed at compile time, but the lo-
cation of work is determined and/or changed at run-time. The
tasks are dynamically scheduled on the different processors of the
parallel architecture. Dynamic load balancing is important for
shared (multi-user) architectures, where the load of a given pro-
cessor cannot be determined at compile time. Dynamic scheduling
is also important for irregular parallel MOEAs in which the exe-



Parallel Multi-Objective Evolutionary Algorithms 39

cution time cannot be predicted at compile time and varies during
the search. For instance, this happens when the evaluation cost of
the objective functions depends on the solution.

Adaptive scheduling: parallel adaptive algorithms are parallel
computations with a dynamically changing set of tasks. Tasks may
be created or killed as a function of the load state of the parallel
machine. A task is created automatically when a node becomes
idle. When a node becomes busy, the task is killed. Adaptive load
balancing is important for volatile architectures such as desktop
grids.

For some parallel and distributed architectures such as shared net-
works of workstations and grids, fault tolerance is an important issue.
Indeed, in volatile shared architectures and large-scale parallel architec-
tures, the fault probability is relatively important. Checkpointing and
recovery techniques constitute one answer to this problem. Application-
level checkpointing is much more efficient than system-level checkpoint-
ing. Indeed, in system-level checkpointing, a checkpoint of the global
state of a distributed application composed of a set of processes is car-
ried out. In application-level checkpointing, only minimal information
will be checkpointed (e.g., population of individuals, generation num-
ber). Compared to system-level checkpointing, a reduced cost is then
obtained in terms of memory and time. Finally, security issues may
be important for large-scale distributed architectures such as grids and
Clouds (multi-domain administration, firewall, etc) and some specific
applications such as medical and bioinformatics research applications of
industrial concern [30].

3.6 Algorithmic-Level Parallel Model

Granularity: the algorithmic-level parallel model has the largest
granularity. Indeed, the time for exchanging the information is in gen-
eral much less than the computation time of a MOEA. There are rel-
atively low communication requirements for this model. The more im-
portant is the frequency of exchange and the size of exchanged infor-
mation, the smaller is the granularity. This parallel model is the most
suited to large-scale distributed architectures over internet such as grids.
Moreover, the trivial model with independent algorithms is convenient
for low-speed networks of workstations over intranet. As there is no
essential dependency and communication between the algorithms, the
speedup is generally linear for this parallel model. The size of the data
exchanged (for instance the number of Pareto solutions) will influence
the granularity of the model. If the number of Pareto solutions is high
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the communication cost will be exorbitant particularly on a large-scale
parallel architectures such as grids.

For an efficient implementation, the frequency of exchange (resp. the
size of the exchanged data) must be correlated to the latency (resp.
bandwidth) of the communication network of the parallel architecture.
To optimize the communication between processors, the exchange topol-
ogy can be specified according to the interconnection network of the
parallel architecture. The specification of the different parameters asso-
ciated with the blind or intelligent migration decision criterion (migra-
tion frequency/probability and improvement threshold) is particularly
crucial on a computational grid. Indeed, due to the heterogeneous na-
ture of computational grids these parameters must be specified for each
MOEA in accordance with the machine it is hosted on.

Scalability: the degree of concurrency of the algorithmic-level par-
allel model is limited by the number of MOEAs involved in solving the
problem. In theory, there is no limit. However, in practice, it is limited
by the owned resources of the target parallel architectures, and also by
the effectiveness aspect of using a large number of MOEAs.

Synchronous versus asynchronous communications: the im-
plementation of the algorithmic-level model is either asynchronous or
synchronous. The asynchronous mode associates with each MOEA an
exchange decision criterion, which is evaluated at each iteration of the
MOEA from the state of its memory. If the criterion is satisfied, the
MOEA communicates with its neighbours. The exchange requests are
managed by the destination MOEAs within an undetermined delay. The
reception and integration of the received information is thus performed
during the next iterations. However, in a computational grid context,
due to the material and/or software heterogeneity issue, the MOEAs
could be at different evolution stages leading to the non-effect and/or
super-solution problem. For instance, the arrival of poor solutions at a
very advanced stage will not bring any contribution as these solutions
will likely not be integrated. In the opposite situation, the cooperation
will lead to premature convergence.

From another point of view, as it is non-blocking, the model is more
efficient and fault tolerant to such a degree a threshold of wasted ex-
changes is not exceeded. In the synchronous mode, the MOEAs perform
a synchronization operation at a predefined iteration by exchanging some
data. Such operation guarantees that the MOEAs are at the same evo-
lution stage, and so prevents the non-effect and super-solution problem
quoted before. However, in heterogeneous parallel architectures, the syn-
chronous mode is less efficient in term of consumed CPU time. Indeed,
the evolution process is often hanging on powerful machines waiting



Parallel Multi-Objective Evolutionary Algorithms 41

the less powerful ones to complete their computation. The synchronous
model is also not fault tolerant as a fault of a single MOEA implies
the blocking of the whole model in a volatile environment. Then, the
synchronous mode is globally less efficient on a computational grid.

Asynchronous communication is more efficient than synchronous com-
munication for shared architectures such as NOWs and desktop grids
(e.g., multiple users, multiple applications). Indeed, as the load of net-
works and processors is not homogeneous, the use of synchronous com-
munication will degrade the performances of the whole system. The
least powerful machine will determine the performance.

On a volatile computational grid, it is difficult to efficiently maintain
topologies such as rings and torus. Indeed, the disappearance of a given
node (i.e., MOEA) requires a dynamic reconfiguration of the topology.
Such reconfiguration is costly and makes the migration process ineffi-
cient. Designing a cooperation between a set of MOEAs without any
topology may be considered. For instance, a communication scheme in
which the target MOEA is selected randomly is more efficient for volatile
architecture such as desktop grids. Many experimental results show that
such topology allows a significant improvement of the robustness and
quality of solutions. The random topology is therefore thinkable and
even commendable in a computational grid context.

Scheduling: concerning the scheduling aspect, in the algorithmic-
level parallel model the tasks correspond to MOEAs. Hence, the different
scheduling strategies will differ as follows:

Static scheduling: the number of MOEAs is constant and corre-
lated to the number of processors of the parallel machine. A static
mapping between the MOEAs and the processors is realized. The
localization of MOEAs will not change during the search.

Dynamic scheduling: MOEAs are dynamically scheduled on the
different processors of the parallel architecture. Hence, the migra-
tion of MOEAs during the search between different machines may
happen.

Adaptive scheduling: the number of MOEAs involved into the
search will vary dynamically. For example, when a machine be-
comes idle, a new MOEA is launched to perform a new search.
When a machine becomes busy or faulty, the associated MOEA is
stopped.

Fault-tolerance: the memory state of the algorithmic-level paral-
lel model required for the checkpointing mechanism is composed of the
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memory of each MOEA and the information being migrated (i.e., pop-
ulation, archive, generation number).

3.7 Iteration-Level Parallel Model

Granularity: a medium granularity is associated to the iteration-
level parallel model. The ratio between the evaluation of a partition
and the communication cost of a partition determines the granularity.
This parallel model is then efficient if the evaluation of a solution is
time-consuming and/or there are a large number of candidate solutions
to evaluate. The granularity will depend on the number of solutions in
each sub-population.

Scalability: the degree of concurrency of this model is limited by
the size of the population. The use of large populations will increase the
scalability of this parallel model.

Synchronous versus asynchronous communications: introduc-
ing asynchronism in the iteration-level parallel model will increase the
efficiency of parallel MOEAs. In the iteration-level parallel model, asyn-
chronous communications are related to the asynchronous evaluation of
partitions and construction of solutions. Unfortunately, this model is
more or less synchronous. Asynchronous evaluation is more efficient
for heterogeneous or shared or volatile parallel architectures. Moreover,
asynchronism is necessary for optimization problems where the compu-
tation cost of the objective function (and constraints) depends on the
solution and different solutions may have different evaluation cost.

Asynchronism may be introduced by relaxing the synchronization con-
straints. For instance, steady-state algorithms may be used in the re-
production phase [6].

The two main advantages of the asynchronous model over the syn-
chronous model are fault tolerance and robustness if the fitness compu-
tation takes very different computations time. Whereas some time-out
detection can be used to address the former issue, the latter one can be
partially overcome if the grain is set to very small values, as individuals
will be sent out for evaluations upon request of the workers. There-
fore, the model is blocking and, thus, less efficient on a heterogeneous
computational grid. Moreover, as the model is not fault tolerant, the
disappearance of an evaluating agent requires the redistribution of its
individuals to other agents. As a consequence, it is essential to store all
the solutions not yet evaluated. The scalability of the model is limited
to the size of the population.
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Scheduling: in the iteration-level parallel model, tasks correspond
to the construction/evaluation of a set of solutions. Hence, the different
scheduling strategies will differ as follows:

Static scheduling: here, a static partitioning of the population is
applied. For instance, the population is decomposed into equal
size partitions depending on the number of processors of the par-
allel homogeneous non-shared machine. A static mapping between
the partitions and the processors is realized. For a heterogeneous
non-shared machine, the size of each partition must be initialized
according to the performance of the processors. The static schedul-
ing strategy is not efficient for variable computational costs of equal
partitions. This happens for optimization problems where different
costs are associated to the evaluation of solutions. For instance, in
genetic programming individuals may widely vary in size and com-
plexity. This makes a static scheduling of the parallel evaluation
of the individuals not efficient.

Dynamic scheduling: a static partitioning is applied but a dynamic
migration of tasks can be carried out depending on the varying load
of processors. The number of tasks generated may be equal to the
size of the population. Many tasks may be mapped on the same
processor. Hence, more flexibility is obtained for the scheduling
algorithm. For instance, the approach based on the master-workers
cycle stealing may be applied. To each worker is first allocated a
small number of solutions. Once it has performed its iterations
the worker requests from the master additional solutions. All the
workers are stopped once the final result is returned. Faster and
less loaded processors handle more solutions than the others. This
approach allows to reduce the execution time compared to the
static one.

Adaptive scheduling: the objective in this model is to adapt the
number of partitions generated to the load of the target architec-
ture. More efficient scheduling strategies are obtained for shared,
volatile and heterogeneous parallel architectures such as desktop
grids.

Fault-tolerance: the memory of the iteration-level parallel model
required for the checkpointing mechanism is composed of different par-
titions. The partitions are composed of a set of (partial) solutions and
their associated objective values.
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3.8 Solution-Level Parallel Model

Granularity: this parallel model has a fine granularity. There is a
relatively high communication requirements for this model. In the func-
tional decomposition parallel model, the granularity will depend on the
ratio between the evaluation cost of the sub-functions and the commu-
nication cost of a solution. In the data decomposition parallel model, it
depends on the ratio between the evaluation of a data partition and its
communication cost.

The fine granularity of this model makes it less suitable for large-
scale distributed architectures where the communication cost (in terms
of latency and/or bandwidth) is relatively important, such as in grid
computing systems. Indeed, its implementation is often restricted to
clusters or network of workstations or shared memory machines.

Scalability: the degree of concurrency of this parallel model is lim-
ited by the number of sub-functions or data partitions. Although its
scalability is limited, the use of the solution-level parallel model in con-
junction with the two other parallel models enables to extend the scal-
ability of a parallel MOEA.

Synchronous versus asynchronous communications: the im-
plementation of the solution-level parallel model is always synchronous
following a master-workers paradigm. Indeed, the master must wait for
all partial results to compute the global value of the objective functions.
The execution time T will be bounded by the maximum time Ti of the
different tasks. An exception occurs for hard-constrained optimization
problems, where feasibility of the solution is first tested. The master
terminates the computations as soon as a given task detects that the
solution does not satisfy a given hard constraint. Due to its heavy syn-
chronization steps, this parallel model is worth applying to problems in
which the calculations required at each iteration are time consuming.
The relative speedup may be approximated as follows:

Sn =
T

α+ T/n
,

where α is the communication cost.
Scheduling: in the solution-level parallel model, tasks correspond to

sub-functions in the functional decomposition and to data partitions in
the data decomposition model. Hence, the different scheduling strategies
will differ as follows:

Static scheduling: usually, the sub-functions or data are decom-
posed into equal size partitions depending on the number of pro-
cessors of the parallel machine. A static mapping between the
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sub-functions (or data partitions) and the processors is applied.
As for the other parallel models, this static scheme is efficient for
parallel homogeneous non-shared machines. For a heterogeneous
non-shared machine, the size of each partition in terms of sub-
functions or data must be initialized according to the performance
of the processors.

Dynamic scheduling: dynamic load balancing will be necessary for
shared parallel architectures or variable costs for the associated
sub-functions or data partitions. Dynamic load balancing may be
easily achieved by evenly distributing at run-time the sub-functions
or the data among the processors. In optimization problems, where
the computing cost of the sub-functions is unpredictable, dynamic
load balancing is necessary. Indeed, a static scheduling cannot
be efficient because there is no appropriate estimation of the task
costs (i.e., unpredictable cost).

Adaptive scheduling: in adaptive scheduling, the number of sub-
functions or data partitions generated is adapted to the load of
the target architecture. More efficient scheduling strategies are
obtained for shared, volatile and heterogeneous parallel architec-
tures such as desktop grids.

Fault-tolerance: the memory of the solution-level parallel model
required for the checkpointing mechanism is straightforward. It is com-
posed of the solution(s) and their partial objective value calculations.

Depending on the target parallel architecture, table 4 presents a gen-
eral guideline for the efficient implementation of the different parallel
models of MOEAs. For each parallel model (algorithmic-level, iteration-
level, solution-level), the table shows its characteristics according to the
outlined criteria (granularity, scalability, asynchronism, scheduling and
fault-tolerance).

4. Conclusions and Perspectives

Parallel and distributed computing can be used in the design and im-
plementation of MOEAs to speedup the search, to improve the quality
of the obtained solutions, to improve the robustness, and to solve large
scale problems. The clear separation between parallel design and paral-
lel implementation aspects of MOEAs is important to analyze parallel
MOEAs. The most important lessons of this paper can be summarized
as follows:

In terms of parallel design, the different parallel models for MOEAs
have been unified. Three hierarchical parallel models have been
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Table 4: Efficient implementation of parallel MOEAs according to some performance
metrics and used strategies.

Property Algorithmic-level Iteration-level Solution-level
Granularity Coarse Medium Fine

(Frequency of exchange, (Nb. of solutions (Eval. sub-functions,
size of information) per partition) eval. data partitions)

Scalability Number Neighborhood size, Nb. of sub-functions,
of MOEAs populations size nb. data partitions

Asynchronism High Moderate Exceptional
(Information exchange) (Eval. of solutions) (Feasibility test)

Scheduling and MOEA Solution(s) Partial
Fault-tolerance solution(s)

extracted: algorithmic-level, iteration-level and solution-level par-
allel models.

In terms of parallel implementation, the question of an efficient
mapping of a parallel model of MOEAs on a given parallel ar-
chitecture and programming environment (i.e., language, library,
middleware) is handled. The focus was made on the key criteria
of parallel architectures that influence the efficiency of an imple-
mentation of parallel MOEAs.

One of the perspectives in the coming years is to achieve Exascale per-
formance. The emergence of heterogeneous platforms composed of multi-
core chips and many-core chips technologies will speedup the achieve-
ment of this goal. In terms of programming models, cloud computing
will become an important alternative to traditional high performance
computing for the development of large-scale MOEAs that harness mas-
sive computational resources. This is a great challenge as nowadays
cloud frameworks for parallel MOEAs are just emerging.

In the future design of high-performance computers, the ratio between
power and performance will be increasingly important. The power rep-
resents the electrical power consumption of the computer. An excess
in power consumption uses unnecessary energy, generates waste heat
and decreases reliability. Very few vendors of high-performance architec-
ture publicize the power consumption data compared to the performance
data.

In terms of target optimization problems, parallel MOEAs constitute
unavoidable approaches to solve large scale real-life challenging problems
(e.g., engineering design, data mining). They are also an important al-
ternative to solve dynamic and uncertain optimization MOPs, in which
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the complexities in terms of time and quality are more difficult to han-
dle by traditional sequential approaches. Moreover, parallel models for
MOPs with uncertainty have to be deeply investigated.
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